CORHEL at the CCMC

Jon Linker, Cooper Downs, Tibor Torok, Viacheslav Titov, Zoran Mikic, Pete Riley, Roberto Lionello, Ron Caplan, & Janvier Wijaya

Predictive Science, Inc. (PSI), San Diego, CA, USA

http://www.predsci.com 10 **26** 10 10 - 1.00 Me\ - 1.75 MeV 10 3.08 MeV 5.39 MeV ភ 10 28.80 Me 50.00 Me ັ_ທ 10 Supported by 10 10 AFOSR, NASA, &NSF **Hours**

What is CORHEL?

- CORHEL "Corona-Heliosphere"
- A coupled set of models and tools for quantitatively modeling the ambient solar corona and solar wind
- The principal observational input to CORHEL are maps of the radial magnetic field at the photosphere, derived from solar magnetograms
- CORHEL provides coronal solutions using 3 approximations:
 - WSA model (numerical potential solver)
 - Polytropic MHD (MAS Code)
 - Thermodynamic MHD (MAS code)
- CORHEL provides two different heliospheric codes: Enlil & MAS
- CORHEL outputs plasma and magnetic field quantities in 3D space
- It also outputs observable quantities for validation
- CORHEL has been delivered to AFRL, CCMC, and CISM

Thermodynamic MHD Models

June 6 - July 3, 2010: Simulated and Observed Emission Lines

• To accurately simulate plasma density, a more sophisticated energy treatment is required (coronal heating, radiative cooling, thermal conduction)

What's Next for CORHEL?

- CORHEL presently provides time-integrated solutions that describe the quasi-steady solar corona and inner heliosphere.
- We are engaged in two projects that will provide community models that describe Coronal Mass Ejections (CMEs) and Solar Energetic Particles (SEPs)
- CORHEL-CG (CORHEL with CME Generation)
 - Primarily supported by AFOSR BRI on CMEs
- STAT Solar particle event (SPE) Threat Assessment Tool
 - NASA STTR program
 - Joint effort between Predictive Science Inc (PSI) and University of New Hampshire (UNH)
 - Couples PSI CME simulations (MAS/CORHEL) with UNH simulations of SEP acceleration and transport (EMMREM)
- I will briefly describe these today

CORHEL-CG

- Our goal is to develop a community tool for simulating CMEs in realistic coronal/solar wind solutions
- At the present time, coronal CME simulations are primarily performed by experts and are typically very manpower intensive
- CORHEL-CG utilizes modified Titov-Demoulin (TDm) flux ropes Titov et al. 2014
 - Allows user to develop stable equilibrium with embedded flux rope(s)
 - Destabilize configuration to initiate CME
- PSI is developing the interface
 - An intuitive interface requires deep knowledge of the model
 - We developed the CORHEL interface presently implemented at the CCMC
- We used this approach to model the Bastille Day (7/14/2000) flare/ CME

Why is Starting from Equilibrium Important?

- Non-equilibrium solutions can have any energy and expand at any speed.
- Solar active regions can store only a finite amount of energy this bounds the size of the eruption.
 - Bounds on energy storage are well described by Aly-Sturrock theorem
- Solar eruptions often show rotation of the erupting flux rope:
 - Strongly out-of-equilibrium flux ropes don't display this property
 - This has can have important consequence for geo-effectiveness
- We want the equilibrium flux rope(s) to disturb the background as little as possible:
 - CME at 1 AU is a combination of initial eruption and overlying fields
- We first study in zero-beta, prior to inserting in full thermodynamic MHD

TD Flux Rope

- Analytic model of circular flux rope as current carrying ring + axial field
- Hoop force of the flux rope is known
- This force is balanced by a strapping field

TDm Flux Rope

- Complete expression for rope vector potentials given in Titov et. al 2014.
- Two types of volumetric current profiles considered (hollow core, parabolic)
- This model is implemented in the MAS code and can be inserted into any configuration

Test Stability with Trial Runs in Zero-Beta

- Zero-beta runs can be performed in minutes on a few hundred processors
- Example of a stable flux rope

Test Stability with Trial Runs in Zero-Beta

- Eruption choosing B_p above stability limit
- Also via flux cancellation

Comparison of TDm Flux Rope with NLFF Model

TDm Flux Rope

Cheng et al. 2012 NLFF model

Predictive Science	ce Inc.	Home	Research & Projects	Publications	About Us	Visitors	Intranet
CORHEL EPREM	И						
Run Registration	>	Ru	ın Registration				
Run Parameters	>						
Run Summary	>		First nam	e Bugs			
			Last name	e Bunny			
			Ema	il <u>bbunn</u> y@	wbros.com		
			Daily reques	t 1			
I salvas Fagusad	Trong	nout]	Equation		Ne	ext	

EPREM solves Focused Transport Equation for particles embedded in MHD electric & magnetic fields

Copyright © 2016 Predictive Science Inc. All rights reserved.

CORHEL EPREM

CORHEL EPREM

EPREM streams

Simulated SEP flux at 1 AU

• Example - (very preliminary) simulation of Bastille Day Event (July 14, 2000)

Summary

- Today I've described the extension of CORHEL into modeling of CMEs and consequent SEP production.
- CORHEL-CG will provide an approach to modeling CMEs starting from equilibrium configurations
 - Our AFOSR-supported project promises delivery to AFRL Kirtland
 - We welcome the opportunity to provide this capability to the CCMC
 - Presently investigating with zero-beta, eventually provide full thermodynamic MHD
- SPE Threat Assessment Tool (STAT)
 - Coupled CORHEL-EPREM Simulations
 - Presently focused on low-coronal response
 - Can also investigate energetic storm particles